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Results are presented for solution of inverse heat-conduction problems, solved by a trial-
and-error method using analog and digital computers (implicit scheme, mesh method),

In recent years inverse problems (IP) of heat conduction have received increasing attention, since in
many cases solution of IP allows one to define boundary conditions more simply than by other methods.
Sometimes the IP solution is a unique source of information as to boundary conditions for an actual struc-
ture. The bibliography of papers on [P heat conduction already numbers several hundred items. A survey
and a classification of methods of heat-conduction IP solution will be the subject of a separate publication,
and here we will only address recent papers [1-4], which gave a short bibliography on the application of
approximate analytical and numerical methods; direct and regularizing methods.

Analog computers (AC), which are used for various numerical methods of solution of direct problems,
using trial and error, began to be applied to the solution of heat-conduction IP about 20 years ago [5], and
with each passing year they find increasing application [6-8]. The error in determining heat fluxes or heat-
transfer coefficients in solution of IP, other conditions being equal, depends considerably on the error of
the initial data (AT). The error is defined as the difference between the temperature given from the ex-
periment (physical or numerical) (T,) and the "true" temperature value (T),

AT =Ty—T.

We use the expression "true" temperature for the value obtained by exact analytical, approximate
analytical, or numerical methods. In our case the true temperatures are obtained by numerical solution
of the direct problem. The accuracy of this kind of numerical solution resides in the assigned limits (e.g.,
£0.05°% and was checked by special investigations similar to the present one, as described in [8-14].

The trial-and-error, or choice, method which uses a numerical method (in our case a mesh method,
implicit finite-difference scheme), has a source of errors not only in AT, but also in other factors., The
effect of these factors on the accuracy of solution of direct problems by numerical methods on an analog
or digital computer has been investigated, for example, in [8-14]. Since a direct method of solution of
heat-conduction problems is used in the trial-and-error method, one must investigate the effect of specif-
ic errors of the method; for example, the errors in AT and the algorithm program errors (¢,). The trial-
and-error method involves operations using the method of solution of the corresponding direct problem,
comparison operations, and operations to vary parameters until one satisfies the condition

T, —T| <&, )
where ¢ is the error of the method. Thus, the trial-and-error method assumes that there is a certain
initial error in the input data. The numerical experiment allows us.to choose & so that

e=¢, +AT.

Results of interesting investigations of the effect of the value of ¢ on the accuracy of solving heat-conduc-
tion IP were given in [2], where the author succeeded in applying the method of regularization proposed

by Tikhonov. Below we investigate the error of the trial-and-error method, and the results are character-
ized by the fact that, in contrast with what was done in [2, 4], no smoothing or regularization was done for
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the original experimental data. It would seem that smoothing and/or regularization must reduce the error
in solving an IP, since these operations would otherwise be useless. It is interesting, particularly in auto-
mating the experiment and in reducing the data obtained, to analyze the errors of an IP without preliminary
smoothing and/or regularization.

The mathematical model of the original problem can be represented in the form

0 or or
A — =0 ( < L),
Ox ( ox ) v Jt O<x ) @
oT
oT
o 0 =h (4)
T(x, 0) szax' (5)

where A, cy= Cp, q are functions of temperature, i.e., the problem is nonlinear. In the case when cy is
the effective heat capacity, including structural heat of internal transformations, the general problem is
nonlinear, with nonlinearities of types I, II, and Il [12], In inverse problems the unknowns are the boun-
dary conditions (i.e., q or @), and in reverse problems they are A, cy*; and in transformed problems

the unknowns are the previous temperature distributions, while the next distributions are known. Some
results are presented below for solution of a nonlinear inverse problem, where the dependence of surface
heat flux on temperature (see Fig. 1) was determined for boiling in a large volume. The points on Fig, 1
denote values of g and @, for which the nonlinear IP was solved on an analog computer, a network integra-
tor, and on the MIR-1 digital computer. The true temperature field was assumed to be that obtained by
solving the nonlinear direct problems by a mesh method, using an implicit scheme. Analysis of the effect
of all the factors governing the accuracy of solution of a direct nonlinear problem allows the conclusion
to be made that these fields are reference quantities for solution of an IP. Onbothtypes of computer the

* Examples of solution of inverse and reverse problems on electrical models are given, for example, in {8].
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Fig. 2. Relative errors in heat flux as a function of the experimen-
tal error and the heat flux value (a) for T, =500-300°C; b) for T, =

o ns V2 p
300-180°C). Aq/Qmax is in%, q is in keal/m* - h.
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Fig. 3. Relative errors in heat-transfer coefficients as a func-
tion of the experimental error and the heat transfer coefficient
for Tmedi_un}=20°C .(a? for T =3500-300°C; b) for Tp =300-180°C).
Aa/0ty, a0y 15 in%, @ is in keal/m® - deg.

trial-and-error method includes the use of a numerical mesh method (implicit finite-difference scheme),
The Libmann method [8, 9] was used on the analog computer, and a well-known calculation routine in im-
plicit scheme was used on the digital computer to calculate nonlinearities in a noniterative scheme [15].

Figures 2 and 3 show the dependence of errors in heat flux (heat-transfer coefficient) on the heat flux
values (heat-transfer coefficients) for various values of e. The algorithm error is e, =0.1°C. Thus, the
total errors are equal to the values of AT shown in the figures plus €,. The effect of the error ¢, =0.1°C
can be seen from the curves for AT =0, for which e =¢,. It can he seen in the figures that the errors in
g and @ depend appreciably on AT, However, for specific conditions a solution of the IP by the trial-and-
error method can be found without smoothing and regularization. The errors in q and o depend on the
ratios of the thermal resistances determining the governing heat fluxes, which depend, in turn, on heat
conduction, heat capacity, and on the external source of heat., In stationary linear IP it is comparatively
simple to evaluate the error; it depends on the values of Bi or Ki, i.e., the ratio of the external thermal
resistance R, or Ry) and the thermal resistance of heat conduction (Rp). In unsteady nonlinear IP the
error should be evaluated for each specific case by the trial-and-error method on an analog or digital com-
puter. To investigate the effect of all the factors it is desirable to use the method of scientific planning
of an experiment, since the traditional approach, i.e., to investigate the effect of each factor at several
levels with constant values of the other factors, requires several thousand calculations.

It can be seen from Figs., 1-3 that the errors Aq and Ay affect dq/dT or dx/dT, and this must be
taken into account in solving a heat-conduction IP,

Finally, we discuss two aspects of the work of [14], one of which is closely associated with the analy-
sis of accuracy of solution of inverse problems. Firstly, numerical solution of a direct nonlinear problem
permits new physical phenomena to be revealed. A clear example is the T-layer effects discovered by
Samarskii et al. Secondly, numerical solution of a direct nonlinear problem is often the only source of a
reference "true" solution to serve as a basis for development of a method of solving the inverse problem.

The oscillations in surface temperature, noted in {14], could be assumed to be the "discovery" of a
physical effect investigated experimentally and theoretically for similar but not identical conditions [186,
17]. Special investigations that we have made have shown that in the case described in [14], the oscilla-
tions were caused by the scheme for computing the nonlinearity. If we calculate the effect of nonlinearities
by an appropriate method (automatic choice of the time interval), the oscillations obtained in {14] vanish.
Thus, the fact noted in [14] that there is reduction of amplitude and frequency of oscillation with reduction
of the time interval is confirmed, and detailed investigations have shown how one can avoid the appearance
of such oscillations in numerical solutions of nonlinear problems.

Thus, careful analysis of the effect of these factors in solving both direct and inverse nonlinear
problems allows us not only to avoid erroneous "discovery," but also to obtain reliable data for reference
solutions. In the case where there are surface oscillations, as in [16, 17], one must make a careful
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analysis of the routine for solution of the inverse problem. The temperature oscillations obtained in ther-
mal experiments in [17] reflect oscillations of real actual heat flux at the surface. These oscillations of

q may be perceived quite accurately when the trlal and error method is performed on electrical models or
on digital computers.

A numerical experiment to solve nonlinear IP of unsteady heat conduction on analog and digital com~
puters shows that for specific requirements as to accuracy of the experimental data, the trial-and-error
method can be used without smoothing and regularization to determine boundary conditions in the transition
regimes. This conclusion may be useful, since it simplifies the method and technique for automating a ther-
mal experiment for which one objective is to solve the IP,
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