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Results  are  presented for solution of inverse heat-conduction problems,  solved by a t r i a l -  
a n d - e r r o r  method using analog and digital computers  (implicit scheme, mesh method), 

In recen t  yea r s  inverse problems (IP) of heat conduction have received increasing attention, since in 
many cases  solution of IP  allows one to define boundary conditions more  simply than by other methods.  
Sometimes the IP  solution is a unique source of information as to boundary conditions for an actual s t ruc -  
ture .  The bibliography of papers on IP  heat conduction a l ready numbers  several  hundred i tems.  A survey 
and a classif icat ion of methods of heat-conduction IP solution will be the subject of a separate publication, 
and here we will only address  recent  papers  [1-4], which gave a short  bibliography on the application of 
approximate analytical and numerical  methods; direct  and regular iz ing methods.  

Analog computers  (AC), which are  used for various numerical  methods of solution of direct  problems,  
using tr ial  and e r r o r ,  began to be applied to the solution of heat-conduction IP about 20 yea r s  ago [5], and 
with each passing year  they find increasing application [6-8]. The e r r o r  in determining heat fluxes or heat-  
t ransfer  coefficients in solution of IP,  other conditions being equal, depends considerably on the e r r o r  of 
the initial data (AT). The e r r o r  is defined as the difference between the temperature  given f rom the ex-  
per iment  (physical or numerical) (Te) and the "true" temperature  value (T), 

k T = T e - - T .  

We use the expression "true" tempera ture  for the value obtained by exact analytical,  approximate 
analytical ,  or numerica l  methods.  In our case the true tempera tures  are  obtained by numerical  solution 
of the direct  problem.  The accuracy  of this kind of numerical  solution res ides  in the assigned limits (e .g . ,  
•  ~ ) and was checked by special investigations similar  to the present  one, as described in [8-14]. 

The t r i a l - a n d - e r r o r ,  or choice, method which uses  a numerical  method (in our case a mesh method, 
implicit  f ini te-difference scheme), has a source of e r r o r s  not only in AT, but also in other fac to rs .  The 
effect of these fac tors  on the accuracy  of solution of di rect  problems by numerica l  methods on an analog 
or digital computer has been investigated, for example, in [8-14]. Since a direct  method of solution of 
heat-conduction problems is used in the t r i a l - a n d - e r r o r  method ,  one must investigate the effect of specif-  
ic e r r o r s  of the method; for example,  the e r r o r s  in AT and the algori thm program e r r o r s  (Ca). The t r i a l -  
a n d - e r r o r  method involves operations using the method of solution of the corresponding direct  problem, 
comparison operations,  and operations to va ry  pa ramete r s  until one sat isf ies the condition 

ITe-- TI -<. e, (1) 

where e is the e r r o r  of the method.  Thus, the t r i a l - a n d - e r r o r  method as sumes  that there is a certain 
initial e r r o r  in the input data. The numerical  exper iment  allows us to choose e so that 

e = e a --AT. 

Resul ts  of interest ing investigations of the effect of the value of e on the accuracy  of solving heat -conduc-  
tion IP  were given in [2], where the author succeeded in applying the method of regular iza t ion proposed 
by Tikhonov. Below we investigate the e r r o r  of the t r i a l - a n d - e r r o r  method, and the resu l t s  are  cha rac t e r -  
ized by the fact that, in contrast  with what was done in [2, 4], no smoothing or regular izat ion was done for 
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Fig.  1. The heat  flux (kca l /m ~ �9 h) as  a 
function of t e m p e r a t u r e  (deg) of the s u r -  
face during boiling in wa te r .  The num-  
b e r s  denote values  of q and T , for  which 
the IP  was solved (see F igs .  l~ and 3). 
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the original  exper imenta l  data .  I t  would seem that smoothing and /o r  regular iza t ion  mus t  reduce the e r r o r  
in solving an IP ,  s ince these opera t ions  would otherwise  be u s e l e s s .  It is in teres t ing ,  pa r t i cu l a r ly  in auto-  
mat ing the exper imen t  and in reducing the data obtained, to analyze the e r r o r s  of an I P  without p r e l i m i n a r y  
smoothing and /o r  r egu la r i za t ion .  

The ma themat i ca l  model  of the original  p rob lem can be r e p r e s e n t e d  in the fo rm 

o or I or  
0x . - ~ x / - c v  0--~- (2) 

OT 
--~" Ox q (x = 0), (3) 

OT 
- -  = 0  i x = L ) ,  

Ox (4) 

T(x, O) = T m a  s ,  (5) 

q a r e  functions of t e m p e r a t u r e ,  i . e . ,  the p rob lem is  nonl inear .  In the case  when c V is where  X, Cv=C0, 
the effect ive heat  capaci ty ,  including s t ruc tu ra l  heat  of internal  t r ans fo rma t ions ,  the genera l  p rob lem is 
nonl inear ,  with nonl inear i t ies  of types  I,  II ,  and III [12]. In inverse  p rob l ems  the unknowns a r e  the boun-  
da ry  conditions ( i . e . ,  q or a) ,  and in r e v e r s e  p rob l ems  t h e y a r e  X, Cv*; and in t r ans fo rmed  p rob l ems  
the unknowns a r e  the previous  t e m p e r a t u r e  d is t r ibut ions ,  while the next  dis t r ibut ions a r e  known. Some 
r e s u l t s  a re  p resen ted  below for  solution of a nonlinear tnverse  p rob lem,  where the dependence of surface  
heat  flux on t e m p e r a t u r e  (see F ig .  1) was de termined for boiling in a la rge  volume.  The points on Fig .  1 
denote values  of q and a ,  for which the nonlinear  IP  was solved on an analog computer ,  a ne twork  i n t eg ra -  
tor ,  and on the MIR-1 digital compu te r .  The t rue  t e m p e r a t u r e  field was a s sumed  to be that obtained by 
solving the nonl inear  d i rec t  p rob l em s  by a mesh  method, using an implici t  s cheme .  Analys is  of the effect  
of all  the f ac to r s  governing the accu racy  of solution of a d i rec t  nonl inear  p rob lem al lows the conclusion 
to be made that these  fields a r e  r e f e r e n c e  quanti t ies  for  solutiun of an IP .  Onboth types  of computer  the 

* Example s  of solution of inverse  and r e v e r s e  p rob l ems  on e lec t r i ca l  models  a r e  given,  for  example ,  in [81. 

: [. ~ ~ J ~ Z ~  ~ffrnt-r~ ~ .... ,,, ~"~~ ~ ~ ~ ' ~ ~  -'~'~ ~a~nt~-/~~x~'~ - ~  x~'x~ 

_$ ~,~Zr ~ e ~  ~ . ~ J _ _  Arnt.rnt_rn e .I ~ ~ * ~  

Fig .  2. Re la t ive  e r r o r s  in heat f l ux  as a funct ion of the ex l3er imen-  
tal e r r o r  and the heat  flux value (a) for  TD=500-300~ b ) f o r  Tp = 
300-180~ �9 ~ t / q m a x  is in %, q is in k c a | / m  2 �9 h.  
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Fig .  3. Relative e r r o r s  in hea t - t r ans fe r  coefficients as a func-  
tion of the experimental  e r r o r  and the heat t ransfer  coefficient 
for  Tmedium=20~ ( a ) f o r  Tn=5O0-300~ b) for Tp =300-180~ 

LS ~ / a m a  x " in %, a is in kcai~m 3. deg. 

t r i a l - a n d - e r r o r  method includes the use of a numerica l  mesh  method (implicit f ini te-difference scheme).  
The Libmann method [8, 9] was used on the analog computer,  and a well-known calculation routine in im-  
plicit scheme was used on the digital computer to calculate nonlineari t ies  in a noniterative scheme [15]. 

F igures  2 and3 show the dependence of e r r o r s  in heat flux (heat- t ransfer  coefficient) on the heat flux 
values (heat- t ransfer  coefficients) for various values of e.  The algori thm e r r o r  is Sa=0.1~ Thus, the 
total e r r o r s  are  equal to the values of AT  shown in the f igures plus e a .  The effect of the e r r o r  e a =0.1~ 
can be seen f rom the curves for A T = 0 ,  for which e =e a.  It can be seen in the f igures that the e r r o r s  in 
q and ~ depend appreciably on AT.  However, for specific conditions a solution of the IP by the t r i a l - and-  
e r r o r  method can be found without smoothing and regular iza t ion.  The e r r o r s  in q and ~ depend on the 
ra t ios  of the thermal  r e s i s t ances  determining the governing heat fluxes, which depend, in turn, on heat 
conduction, heat capacity, and on the external source of heat .  In s tat ionary l inear IP  it is comparat ively  
simple to evaluate the e r ro r ;  it depends on the values of Bi or Ki, i . e . ,  the ra t io  of the external  thermal  
res i s tance  (R~ or Rq) and the thermal  res i s tance  of heat conduction (R~). In unsteady nonlinear IP the 
e r r o r  should be evaluated ~or each specific case by the t r i a l - a n d - e r r o r  method on an analog or digital com-  
puter .  To investigate the effect of all the fac tors  it is desirable to use the method of scientific planning 
of an experiment ,  since the traditional approach,  i . e . ,  to investigate the effect of each factor at several  
levels  with constant values of the other fac tors ,  requi res  several  thousand calculations.  

It can be seen from Figs .  1-3 that the e r r o r s  Aq and i ~  affect dq/dT or ck~/dT, and this must  be 
taken into account in solving a heat-conduction I P ,  

Finally,  we discuss  two aspects  of the work of [14], one of which is closely associated with the analy-  
sis  of accu racy  of solution of inverse problems.  F i rs t ly ,  numerical  solution of a direct  nonlinear problem 
permi t s  new physical phenomena to be revealed .  A clear  example is the T- layer  effects discovered by 
Samarski i  et al .  Secondly, numer ica l  solution of a di rect  nonlinear problem is often the only source of a 
re fe rence  "true" solution to serve as a basis  for development of a method of solving the inverse problem.  

The oscillations in surface tempera ture ,  noted in [14], could be assumed to be the "discovery" of a 
physical  effect investigated experimental ly  and theoret ical ly  for s imilar  but not identical conditions [16, 
17]. Special investigations that we have made have shown that in the case described in [14], the osc i l la -  
tions were caused by the scheme for computing the nonlineari ty.  If we calculate the effect of nonlinearit ies 
by an appropriate  method (automatic choice of the t ime interval),  the oscillations obtained in [14] vanish.  
Thus, the fact  noted in [14] that there is reduction of amplitude and frequency of oscillation with reduction 
of the time interval is confirmed, and detailed investigations have shown how one can avoid the appearance 
of such oscil lat ions in numerica l  solutions of nonlinear problems.  

Thus, careful  analysis  of the effect of these fac tors  in solving both d i rec t  and inverse nonlinear 
problems allows us not only to avoid e r roneous  "discovery ,"  but a lso to obtain reliable data for re ference  
solutions.  In the case where there a re  surface oscil lat ions,  as in [16, 17], one must  make a careful 
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analysis  of the routine for solution of the inverse  p rob lem.  The t empera tu re  oscil lat ions obtained in t h e r -  
mal exper iments  in [17] re f l ec t  oscil lat ions of rea l  actual heat flux at the sur face .  These oscil lat ions of 
q may  be perce ived quite accura te ly  when the tr ial  and e r r o r  method is pe r fo rmed  on e lec t r ica l  models  or 
on digital c o m p u t e r s .  

A numer ica l  exper iment  to solve nonlinear IP  of unsteady heat conduction on analog and digital com-  
puters  shows that for  specif ic  r equ i remen t s  as to accu racy  of the exper imenta l  data, the t r i a l - a n d - e r r o r  
method can be used without smoothing and regular iza t ion  to determine boundary conditions in the t ransi t ion 
r e g i m e s .  This conclusion may be useful,  since it s implif ies  themethod and technique for automating a t he r -  
mal exper iment  for  which one objective is to solve the IP .  
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